
 1

Data Hub Functional Architecture
Classification: APPROVED REFERENCE DOCUMENT

Confidentiality: PUBLIC

Version 1.0

1/27/2022

[IDH]

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 2

Legal

THIS DOCUMENT HAS BEEN DESIGNATED BY THE INNOVATIVE OPTICAL AND WIRELESS NETWORK GLOBAL
FORUM, INC. (“IOWN GLOBAL FORUM”) AS AN APPROVED REFERENCE DOCUMENT AS SUCH TERM IS USED
IN THE IOWN GLOBAL FORUM INTELLECTUAL PROPERTY RIGHTS POLICY (THIS “REFERENCE DOCUMENT”).

THIS REFERENCE DOCUMENT IS PROVIDED ”AS IS” WITH NO WARRANTIES WHATSOEVER, WHETHER
EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF
MERCHANTABILITY, NONINFRINGEMENT OF THIRD PARTY RIGHTS, TITLE, VALIDITY OF RIGHTS IN, FITNESS
FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
REFERENCE DOCUMENT, SAMPLE, OR LAW. WITHOUT LIMITATION, IOWN GLOBAL FORUM DISCLAIMS ALL
LIABILITY, INCLUDING WITHOUT LIMITATION LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS
AND PRODUCTS LIABILITY, RELATING TO USE OF THE INFORMATION IN THIS REFERENCE DOCUMENT AND
TO ANY USE OF THIS REFERENCE DOCUMENT IN CONNECTION WITH THE DEVELOPMENT OF ANY
PRODUCT OR SERVICE, AND IOWN GLOBAL FORUM DISCLAIMS ALL LIABILITY FOR COST OF
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA OR
ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, PUNITIVE, EXEMPLARY, OR SPECIAL DAMAGES,
WHETHER UNDER CONTRACT, TORT, WARRANTY OR OTHERWISE, ARISING IN ANY WAY OUT OF USE OR
RELIANCE UPON THIS REFERENCE DOCUMENT OR ANY INFORMATION HEREIN.

EXCEPT AS EXPRESSLY SET FORTH IN THE PARAGRAPH DIRECTLY BELOW, NO LICENSE IS GRANTED
HEREIN, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS
OF THE IOWN GLOBAL FORUM, ANY IOWN GLOBAL FORUM MEMBER OR ANY AFFILIATE OF ANY IOWN
GLOBAL FORUM MEMBER. EXCEPT AS EXPRESSLY SET FORTH IN THE PARAGRAPH DIRECTLY BELOW, ALL
RIGHTS IN THIS REFERENCE DOCUMENT ARE RESERVED.

A limited, non-exclusive, non-transferable, non-assignable, non-sublicensable license is hereby granted by IOWN
Global Forum to you to copy, reproduce, and use this Reference Document for internal use only. You must retain this
page and all proprietary rights notices in all copies you make of this Reference Document under this license grant.

THIS DOCUMENT IS AN APPROVED REFERENCE DOCUMENT AND IS SUBJECT TO THE REFERENCE
DOCUMENT LICENSING COMMITMENTS OF THE MEMBERS OF THE IOWN GLOBAL FORUM PURSUANT TO
THE IOWN GLOBAL FORUM INTELLECTUAL PROPERTY RIGHTS POLICY. A COPY OF THE IOWN GLOBAL
FORUM INTELLECTUAL PROPERTY RIGHTS POLICY CAN BE OBTAINED BY COMPLETING THE FORM AT:
www.iowngf.org/join-forum. USE OF THIS REFERENCE DOCUMENT IS SUBJECT TO THE LIMITED INTERNAL-
USE ONLY LICENSE GRANTED ABOVE. IF YOU WOULD LIKE TO REQUEST A COPYRIGHT LICENSE THAT IS
DIFFERENT FROM THE ONE GRANTED ABOVE (SUCH AS, BUT NOT LIMITED TO, A LICENSE TO TRANSLATE
THIS REFERENCE DOCUMENT INTO ANOTHER LANGUAGE), PLEASE CONTACT US BY COMPLETING THE
FORM AT: https://iowngf.org/contact-us/

Copyright © 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. Except for the limited
internal-use only license set forth above, copying or other forms of reproduction and/or distribution of this Reference
Document are strictly prohibited.

The IOWN GLOBAL FORUM mark and IOWN GLOBAL FORUM & Design logo are trademarks of Innovative Optical
and Wireless Network Global Forum, Inc. in the United States and other countries. Unauthorized use is strictly
prohibited. IOWN is a registered and unregistered trademark of Nippon Telegraph and Telephone Corporation in the
United States, Japan, and other countries. Other names and brands appearing in this document may be claimed as
the property of others.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 3

Contents
1. Introduction ... 6

2. Required Service Types.. 7

3. IDH Service types and classes .. 9

3.1. Service types ... 9

3.1.1. Distributed Relational Database .. 9

3.1.2. Key-Value Store (KVS) .. 10

3.1.3. Graph Store .. 10

3.1.4. Message Broker ... 11

3.1.5. Object Storage ... 12

3.2. Service Classes... 12

3.2.1. Basic Service Classes .. 13

3.2.2. Applied Service Classes .. 13

4. Today’s Implementation Models and Gap Analysis .. 15

4.1. Distributed Relational Database (Distributed RDB) .. 15

4.2. Key-Value Store (KVS) ... 19

4.3. Graph Store ... 22

4.4. Message Broker .. 24

4.5. Object Storage .. 26

5. IDH Reference Implementation Models ... 29

5.1. IDH Generic Architecture and Acceleration Methods ... 29

5.1.1. Solution to eliminate bottlenecks around Client - Frontend - Data Service Tier
connections .. 31

5.1.2. Solution to eliminate bottlenecks around inter-Data Service Server communications 31

5.1.3. Solution to eliminate bottlenecks around Data Service Server - Storage Tier
communications ... 32

5.2. IOWN Reference Implementation Model for Each IDH Service Class 32

5.2.1. Distributed Relational Database (Distributed RDB) ... 32

5.2.2. Key-Value Store (KVS) .. 34

5.2.3. Graph Store .. 35

5.2.4. Message Broker ... 37

5.2.5. Object Storage ... 39

5.2.6. Converged DB .. 41

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 4

5.2.7. Context Broker ... 43

5.2.8. Virtual Data Lake (Federated Object Storage)... 44

5.2.9. Virtual Data Lake House .. 46

6. Example Use Cases .. 48

6.1.1. Live 4D Map ... 48

6.1.2. Green Twin ... 50

7. Next Steps .. 53

References ... 54

History .. 55

List of Figures
Figure 1. Today’s Implementation Models of the Distributed RDB ... 16
Figure 2. Today’s Implementation Model of the Block Storage .. 18
Figure 3. Today’s Implementation Models of the Key-Value Store... 20
Figure 4. Complex Query Behaviors in the Key-Value Store .. 21
Figure 5. Concept of the consistent hash-based data distribution .. 21
Figure 6. High-level Data Structure in the Graph Store .. 22
Figure 7. Today’s Implementation Models of the Graph Store ... 23
Figure 8. Today’s Implementation Models of the Message Broker .. 25
Figure 9. Today’s Implementation Models of the Object Storage ... 27
Figure 10. Overall Structures of Today’s Implementation Models of IDH Services 30
Figure 11. Common Internal Structure of Today’s Implementation Models of IDH Services 30
Figure 12. Basic Structure of Distributed Relational DB ... 32
Figure 13. Reference Implementation Models of IOWN IDH Distributed Relational DB 34
Figure 14. Basic Structure of Key-Value Store ... 34
Figure 15. Reference Implementation Models of IOWN IDH Key-Value Store .. 35
Figure 16. Reference Implementation Models of IOWN IDH Graph Store ... 37
Figure 17. Reference Implementation Models of IOWN IDH Message Broker .. 38
Figure 18. Basic Structure of Object Storage ... 39
Figure 19. Reference Implementation Models of IOWN IDH Object Storage ... 41
Figure 20. Reference Implementation Models of IOWN IDH Converged DB ... 42
Figure 21. Reference Implementation Models of IOWN IDH Context Broker ... 43
Figure 22. Reference Implementation Models of IOWN IDH Virtual Data Lake ... 45
Figure 23. Reference Implementation Models of IOWN IDH Virtual Data Lake House.............................. 46
Figure 24. Live 4D Map Concept .. 48
Figure 25. IDH Service Mapping to build Live 4D Map ... 50
Figure 26. Green Twin Use Case ... 51
Figure 27. IDH Service Mapping to build Green Twin .. 52

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 5

List of Tables
Table 1. IDH related Data flows from RIM for “Area Management Security” use case 7
Table 2. Mapping of data flows to IDH service types .. 8

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 6

1. Introduction
The IOWN Data Hub or IDH for short is a data management & sharing infrastructure that enables fast and trusted data
processing, usage, and exchange among multiple parties or locations. The Data Hub is realized as an application’s
functional node on top of the IOWN GF DCI [IOWN GF DCI] architecture and is intended to be commonly used by other
application nodes. It maintains compatibility with existing applications while taking advantage of the advanced nature
of the DCI and Open APN [IOWN GF Open APN].

This document defines IOWN Data Hub services so that service providers can develop the Data Hub as a service, and
application providers can design their applications through multiple service providers on top of Data Hub services. The
IOWN Data Hub supports APIs that are functionally compatible with those of well-adopted services, such as Apache
Kafka/Pulsar, AWS S3, and SQL. To achieve trusted data exchange among multiple parties while maintaining data
ownership, the Data Hub provides unified secure access not only to its internal storage but also to data that each
organization has kept on-premises or in the cloud. As some use cases require message brokerage services and some
require database/storage services, we will discuss what service types will be needed in chapter 2. We then define
several service types and classes as described in chapter 3.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 7

2. Required Service Types
As mentioned above, various use cases discussing in IOWN GF have diverse requirements for Data Hub [IOWN GF
AI UC] [IOWN GF CPS UC]. We first organized these requirements into several service types. A service type is defined
as a unit of functionality and behavior that should be implemented together in one or several IDH services. On the other
hand, it may not be sufficient to provide individual service types to realize use cases. In other words, it is necessary to
design a component that inherits and implements multiple service types. Such a component is defined as an IDH class
and described in chapter 3. The implementation using the IOWN DCI corresponding to each class is described in
chapter 5.

Based on the discussion in the Reference Implementation Model (RIM) document [IOWN GF RIM], which analyzes use
cases and builds full-stack system models, we extracted data flows relevant to Data Hub and examined what service
types would be required. The data flow details will be updated based on ongoing discussions to improve the RIM. Still,
we analyzed the current data flow of the RIM because it contains enough clues to determine the minimum number of
service types needed.

The table below shows the data flows and their properties related to Data Hub, based on “RIM Annex C. Detailed DPD
for CPS Area Management Security”.

 Table 1. IDH related Data flows from RIM for “Area Management Security” use case

DATA
FLOW

DATA
TYPE

OF
DATA
SOURCE
S

OF
DATA
CONSUM
ERS

FORMAT
VOLUME
(PER
SOURCE)

OCCURR
ENCE
(PER
SOURCE)

PERSIST
ENCE
NEEDED

COMMUNI
CATION
SCHEME

Inference
results

Labeled
data (Text
data)

1,000 x N
(N:
number of
monitored
areas)

(logically)
1

(TBD)
3 KB x10
labeled
objects

15 /
second

Y TBD

Surveillan
ce video Video data 1,000 x N

(logically)
1

H.264
or
Motion
JPEG

0.4MB /
second
(H.264)

125KB x
15 /
second
(Motion
JPEG)

← Y TBD

LiDAR
data

Sensor
data

1,000 x N
(logically)
1

Point
Cloud

FFS MB x
20

1 / second Y TBD

Notificatio
n
messages

Text data 1,000 x N (logically)
1

(TBD) 256KB 15 /
second

 TBD

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 8

User
status

Composite
data

1,000 x N (logically)
1

(TBD) 1.5KB 1 / minute Y TBD

Voice
messages Audio data N 100 x N (TBD) 200KB 1 / day TBD

We considered which service type of IDH handles each data flow in the table above. This description roughly follows
the concept of data flow processing for current Internet applications. Still, we assume that it will not change much in
the IOWN Data Hub any time soon, considering its compatibility with existing applications. The basic idea behind this
mapping is as follows:

• Individual data identifiable by some kind of structural query should be put into the Distributed Relational
Database, as long as the processing speed permits.

• Relatively large size data flows, such as video and image data, are handled by the Object Storage. It typically
requires more throughput (bandwidth) than latency.

• Although the size of each record is relatively small, a vast number of data records are handled by the Key-
Value Store (KVS). Certain time-series data or sensor data will be mapped to this service type.

• A message broker is used in the following cases.

o The throughput (TPS) is so large that it cannot be accommodated by any other service type and must
be stored in some queue.

o The number of data providers and consumers is vast and changes dynamically.

o Only the relaying of data is required, not the persistence of the data.

Table 2. Mapping of data flows to IDH service types

DATA FLOW PREFERRED IDH SERVICE TYPE

Inference results Distributed Relational Database

Surveillance video Object Storage

LiDAR data Key-Value Store or Object Storage

Notification messages Message broker

User status Key-Value Store

Voice messages Message broker

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 9

3. IDH Service types and classes

3.1. Service types
A service type is defined as a unit of functionality and behavior that will be implemented by one or several actual IDH
services. To make the IDH service available for external application nodes, functional and non-functional requirements
and interface requirements such as API* are described here.

* This document contains only high-level API type information. The detailed API specification will be developed through
various efforts following this document.

3.1.1. Distributed Relational Database
A distributed relational database is a service type for storing structured data. If the data is “well-formed,” meaning the
individual data can be identifiable by some kind of structural query, and if the data read/write speed is sufficient, it would
be best to use this service type so that various applications can store and use the data without any extra data conversion
process outside the Data Hub. This service type is intended for OLTP in general databases and data analysis use
cases such as OLAP in data warehouses.

Today’s single server, HA configuration, or typical Cloud-based databases can handle 20 ~ 50 K TPS for OLTP and 5
- 10x bigger data inserts per second for IoT-type benchmark traffic. Some distributed databases can provide better
performance by having more servers and distributing the data based on some algorithm; however, cross-server data
queries, especially joins, do not scale linearly. IOWN GF is trying to improve this situation.

If the performance requirements of the target application fall within this range, then it can be covered by this service
type. On the other hand, if the use case requirements cannot be met in terms of performance, this service type cannot
be used, so it is necessary to use other service types such as KVS or Message Broker to receive the data.

Supposed data flows

• Labeled data of detected objects (output of AI Inference)

Functional requirements

• APIs

o JDBC, ODBC, that support SQL

o REST API that accepts SQL-based data queries and responds in JSON format

• Other key requirements

o Data schemas need to be flexible enough to accommodate long-term data lifecycles

Performance and other non-functional requirements

• Scalability of data writing and reading speed when the amount of data to be stored increases

o Especially sufficient speed for writing data when the data generation interval is very short

• Strong consistency even in a distributed DB

• Flexibility to change consistency level according to performance requirements.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 10

3.1.2. Key-Value Store (KVS)
KVS is a service type for storing an enormous number of data records, e.g., trillions, quadrillions, or more, although the
size of each record is not so big, e.g., less than 100 KB. For example, time-series data and sensor data would be
handled by this service type.

Supposed data flows

• Sensor data (e.g., point cloud)

• User related data

Functional requirements:

• APIs

o REST APIs to put and update data, specifying the key and the value, or a list of key-value sets

o REST APIs to get and delete data, specifying a single key, or a list of keys

o REST APIs to query data, specifying query conditions against value data

 Note: Value field could be JSON or any other wide-column type field, that consists of child,
grandchild, or descendant key-value sets. Therefore, this API has to support queries based
on these sub-keys.

Performance and other non-functional requirements

• Consideration of data location during data accesses

o Note: Data will be distributed across multiple KVS servers. So, any data access requests need to be
forwarded to the node where the target data exists. If there are multiple copies of data, then the
nearest node should be selected for performance.

• Latency (between data storage and retrieval)

• Depending on the performance and size requirements, we should be able to choose a data storage from
different storage classes, such as

o In-memory KVS without persistence,

o In-memory KVS with persistence, and

o Disk-based KVS.

3.1.3. Graph Store
This service type stores data modeled as a graph. Nodes and edges that connect nodes form a graph. Information of
nodes is stored as properties of those elements. The stored data forms a graph of information with links between pieces
of information. Stored data might follow a pre-defined schema named ontology. The ontology describes how the data
is structured and allows the application developers to formulate a semantic query. A semantic query allows retrieving
information based on associative and contextual scope.

Supposed data flow

• Sensor data

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 11

• Metadata of video/audio/text data

• Notifications messages

• User related data

• Knowledge data of the environment

Functional requirements

• APIs

o REST API that accepts queries based on SPARQL, PGQL, and other domain-specific languages
(DSL), and responds in JSON format

o JDBC, ODBC that support SPARQL, PGQL, and other DSL

• Other key requirements

o Ontologies and metamodel needs to accommodate the semantic of the specific use case and across
use case: metamodel, cross-domain ontology, domain-specific ontologies

o A domain-specific language for Digital Twin comprising means for thing query, geographic query,
and historical query

o Synchronous data retrieval: query-response

o Asynchronous data retrieval: subscribe-notification

Performance and other non-functional requirements

• Scalability of the system to accommodate large graph of data

• Mechanisms to avoid retrieval of a too big subgraph resulting in query timeout, e.g., pagination

3.1.4. Message Broker
Message Broker is intended to be used as a message brokering service or data streaming service for any of the
following scenes:

1. The application needs to be distributed to a large number of clients.

2. Data contains a mixture of sizes, types, or formats.

3. Data needs to be formatted, converted, or aggregated in a complicated pipeline.

Supposed data flows

• Notification messages

• Voice Messages

• A mixture of notification messages and camera images

Functional requirements:

• APIs

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 12

o General message broker API (e.g., Apache Kafka compatible API)

Performance and other non-functional requirements

• High throughput (amount of data can be relayed)

• Low data transfer latency

• Achieve both high throughput and low latency, regardless of data size, type, or format

• Ensuring data reachability

3.1.5. Object Storage
Object storage is a service type to store relatively large object data, such as video, image, log, and other types of semi-
structured and unstructured data, at low cost. Typical use cases are to store big data for a more extended period of
time and provide data-to-data analysis applications such as AI and data lakes to prepare for future data utilization.

Supposed data flows

• Video data

• Sensor data (e.g., point cloud)

Functional requirements:

• APIs

o General Object Storage API (e.g., REST API that is compatible with AWS S3)

o Expanded APIs for various applications: classic file access like CIFS/SMB/NFS, high throughput and
efficient data upload/download, specifying query conditions, etc.

• Other key requirements

o Should be capable of bi-directional conversion between object storage and file storage.

o It should have advanced encryption capabilities to preserve data security.

Performance and other non-functional requirements

• Throughput for data access

• Scalability (amount of data that can be stored)

• It should be flexible enough to be configured in a trade-off manner according to performance and cost
requirements.

3.2. Service Classes
An IDH Service Class represents a template including a typical combination of APIs and features referred to when the
service provider implements IDH services. To meet different business needs, there will be various service classes to
be developed. This section discusses service classes by dividing them into basic ones that inherit only one service type
and applied ones that inherit multiple service types and/or are extended to cover IOWN GF unique requirements, such
as federation.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 13

3.2.1. Basic Service Classes
Basic Service Classes inherit only one corresponding service type. Those include the following:

• Distributed Relational Database (Distributed RDB)

• Key-Value Store

• Graph Store

• Message Broker

• Object Storage

3.2.2. Applied Service Classes
Applied Service Classes are defined so that it inherits multiple service types and/or integrate multiple service classes,
as described below:

Converged DB
To satisfy various IOWN GF use cases, different types of data need to be processed simultaneously. For instance,
when considering a scenario, in which people's behavior inside a building is analyzed to provide appropriate digital
supports for them, the interactions of people, people-to-people, or people-to-thing must be managed and processed
together. Therefore, the data structure that expresses such things requires great flexibility. If different IDH services are
used for different data structures, the real-time-ness required in the IOWN GF requirements will not be achieved,
especially when considering the process of reading them in sequence. A converged DB provides the foundation for
high-speed, simultaneous processing of various data to meet such needs. A converged DB inherits the following service
types:

• Distributed Relational Database

• Key-Value Store

• Graph Store

• Message Broker

Context Broker
This service class supports context-aware communication between data providers and applications. Data is requested
by specifying the context scope, where context identifies the focus of the information, such as a thing (e.g., a specific
building), a type of thing, geographic scope, temporal scope, or a combination of these. The typical architecture of the
context broker is a federation of many context providers that have access to data, or federation of context brokers, or
a hybrid combination of providers and brokers. Upon a context request, the context broker provides the context
managed locally and context managed by other context brokers and context providers. Thus, this system acts as a
broker that provisions data to the requester. The data provisioning might happen in two ways: 1) a synchronous request
is responded with a single data response, 2) an asynchronous request ignites the establishment towards the requester
of a stream of information that matches the requested context. As part of the context, a piece of information might be
related to other information forming an interrelated context. A context broker inherits the following service types, with
expanded APIs and features to support federation and/or aggregation of services:

• Graph Store

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 14

• Message broker

• Distributed Relational Database (Distributed RDB)

Virtual Data Lake (Federated Object Storage)
The concept of a data lake, which was born with the advent of Hadoop, is now being transformed into a solution based
on object storages in the cloud. As the amount of data increases continuously, it will change to a distributed one based
on multi-cloud, edge cloud, etc. To prepare for such expected future demands, Virtual Data Lakes provide a mechanism
for bundling multiple geo-distributed object storage and making them appear as one object storage. Virtual Data Lake
inherits the following service type, with expanded APIs and features to support federation and/or aggregation of
services:

• Object Storage

Virtual Data Lake House
IOWN GF anticipates a future in which multiple companies and organizations exchange big data openly and securely
to solve social issues. For example, to stabilize the operation of the electric power grid in which renewable energy
accounts for the majority of the supply, the supply and demand situation of electric power will need to be exchanged in
real-time. Virtual Data Lake House will provide solutions to such needs. It provides secure and transparent access to
various data sources belonging to different owners. It also orchestrates data processing to execute it as close to the
data source as possible to optimize overall data processing, by considering the placement of data and the IDH Service.
Virtual Data Lake House inherits the following service types, with expanded APIs and features to support federation
and/or aggregation of services:

• Distributed Relational Database

• Key-Value Store

• Graph Store

• Message Broker

• Object Storage

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 15

4. Today’s Implementation Models and Gap
Analysis

Many relevant technologies corresponding to the Data Hub classes in the previous chapter already exist in the market.
However, to realize IOWN GF use cases, there are many challenges still to be overcome. In this section, typical
implementation models of each technology type are reviewed, and gaps are analyzed.

4.1. Distributed Relational Database (Distributed RDB)
Existing Technologies Overview
An example of a distributed Relational DB (Distributed RDB) is configured to have all-active masters on top of the
shared storage. In such an implementation model, any mater node can update and reference any data. Another
example is to use Read-only Replica to increase read throughput. In this configuration, the replica node cannot update
data but provide read-only access. Besides these, there are also implementation models based on shared-nothing
architecture. In these models, data is divided and assigned to each node or always synchronized among the nodes.

Today’s Implementation Models
Today’s typical implementation models are described in the figure below. Data, data access requests, and responses
to data access requests are forwarded in consideration of the distributed environment, as shown in the figure.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 16

Figure 1. Today’s Implementation Models of the Distributed RDB

Gap Analysis for the DB Server Tier
A common consideration point across different implementation models is the existence of an Endpoint that connects
the client and the Distributed RDB Service instances in the cloud. In a cloud service, a dedicated resource pool tends
to be used to run the DB services for performance, and software-defined controls are embedded there to provision the

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 17

DB instance quickly for the tenant. Therefore, the roles of the DB Service endpoint are to connect the DB to the tenant’s
software-defined private network, block any unauthorized access to the DB, and provide load balancing and failover
controls. Such a logical mechanism on top of the physical resource pool slows down the response time of the DB, which
is typically more than a few milliseconds even for the single record query in typical cloud offerings.

For implementation models like All-Active Shared-Storage-based Distributed RDB, the performance will be degraded
if a lot of cached data needs to be moved repeatedly. To avoid such a situation, the number of DB servers for the single
application is typically 4 or 8. Thus it is usually very difficult to support as many as 1 million update transactions every
second.

When assuming the digital era as described in IOWN GF use cases, the size of each data record will increase, and
multiple clients will continually request access to data records. The result will be more frequent cached data movement
resulting in network traffic that will continue to grow larger and larger.

To address this challenge, there will be several options in developing the new technologies. This might include new
network technology that reduces network latency when connecting DB servers and storage nodes and increases the
amount of bandwidth to move cached data more smoothly. Another option might be to avoid moving cached data across
servers and forward the data access request, namely the SQL statement, to the server where the requested data exists.
This is especially ideal when the data access is larger than the request itself or many “chatty” update transactions. By
doing so, it will be possible to utilize more DB servers to scale out the performance and make DB servers span across
adjacent data centers, i.e., availability zone in the public cloud case, for durability.

The master nodes that accept updates quickly become a bottleneck for implementation models like Read-only Replica-
based Distributed RDB. This happens because the RDB usually is expected to guarantee data consistency, so only
the master can update the data. If the data is updated in different servers in an optimistic way, it becomes difficult to
ensure consistency since data update conflicts and/or wrong data updates by referencing outdated data will occur quite
frequently. In addition, it is also difficult to guarantee the read consistency, e.g., the query requesting the latest data
will be responded to older data by the RDB server, or dirty reads may happen as the data may be updated during the
read transaction uncontrollably. To avoid such a situation, it is required to let the client ask the master node about
committed transactions before it reads the data from one of the replicas and maintain the multi-version of data with a
time stamp based on the most lagging local clock in the server cluster. Furthermore, if the replica server is placed in
the adjacent data center as in the public cloud today, data synchronization becomes a further burden to performance.
Therefore, the read performance scales very well with this implementation model to one hundred of thousands of TPS.
Still, the write performance will be limited to tens of thousands of TPS, thus not enough for IOWN GF use cases.

To increase the write-operation throughput, a technique known as a sharded DB is also used. In the sharded DB, the
whole data is split into several units and distributed across multiple DB servers (Shards). When updating the data, the
DB shard that manages the target data is responsible for update operations. When reading the data, multiple DB Shards
work together to process the query and respond the data back to the client. In this way, the write throughput can be
linearly increased by adding more servers if the data update request is evenly distributed among the Shards. However,
this pattern is not perfect. For instance, the data exchange between Shards will be frequent if the client requests a
complex query that includes complex joins, sub-queries, etc. As a result, the query performance will be extremely slow
in today’s cloud environment. Also, if a server failure happens, specific data will not be accessible until the proper
failover operation is conducted.

An All-Active technique can further increase the write performance and improve service continuity by eliminating any
single point of failure. In this configuration pattern, data is always synchronized between 2 or several servers, and each
server can conduct write operations with the support of the two-phase commit protocol. In this way, multiple CPU cores
from multiple servers can work together to update the same set of data to increase write throughput. However,
communications between/among servers will be very frequent in a “chatty” manner. The network will limit the
communication performance, and CPU usage efficiency will decrease due to the waiting time for communications.

Lastly, it should be noted that these four patterns can be combined to solve a specific problem. For instance, Oracle
RAC Sharding inherits patterns A and C, GCP Spanner inherits Pattern B and C, and Oracle TimesTen Scaleout inherits

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 18

patterns B, C, and D. In any case, the performance of these RDB implementations is significantly suppressed by the
latency and bandwidth of network communications between DB servers, and between DB servers and data stores.

Gap Analysis for the Storage Tier
Block storage is typically used as the data persistence layer for database-type workloads in today’s cloud environment.
To guarantee data persistence, the data is replicated locally three times across multiple storage servers. The storage
servers handle the storage I/O requests sent from any clients and manage the volume and data blocks inside them
while highly isolating each tenant data for security reasons. To manage the system configuration and the address of
each data block, the storage server embeds the local DB, updates the information when the configuration is changed.
To increase the throughput and reduce latency, the Block storage service is located in each Cloud availability zone,
and sometimes the multi-tenant control plan functionality is offloaded to the Smart NIC. A typical implementation model
of today’s Block Storage system is shown below.

Figure 2. Today’s Implementation Model of the Block Storage

The storage I/O capacity, access latency, and available bandwidth of the block storage are critical factors to build a
high-performance database system. However, as seen in the above diagram, multiple points slow down the
performance, as listed below:

• Data Replication over limited network resources
To guarantee data persistence, the data is copied across multiple block storage servers. This data
duplication slows down the write storage access even when the specialized resource pool is used for the
Block Storage service because write operations must wait for all servers to finish writing the data to its local

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 19

storage. In addition, to avoid network congestion and resource contention, it generally applies tight throttling
controls for storage access I/O and throughput.

• The network connection between the block storage and its client (e.g., application server)
Due to the large resource pool in the Cloud environment, the network packet should go through multiple
network switches; thus, storage access is slowed down.

• Multi-Tenant Control
To build a highly scalable environment, cloud infrastructure typically adopts a mesh-style, clustered network,
such as Spine-Leaf-Network architecture. This implies each time when the network packet is exchanged
between two switches, the cloud control plane examines the network packet (header) and determines the
physical network path to route the packet. This largely slows down the storage access latency.

Due to such restrictions, Block Storage cannot be used in the same way as Local Storage. For example, storage access
latency is much higher, such as one millisecond or more (local storage could provide an order of tens of micro-second
or less latency). Storage access IOPS is much lower, such as tens of thousands per 1 TB volume (1 TB PCIe SSD
could provide more than hundreds of thousands of IOPS). This is the primary reason DB services in the cloud are much
slower than the on-premise DB instances.

4.2. Key-Value Store (KVS)
Existing Technologies Overview
There are various KVS systems already, but these can generally be described as a system with the following
characteristics.

• The record is identified and accessed by the Primary Key

• Sharding Key and Distribution Algorithm controls how data is distributed across multiple servers

• Each record can hold various types of a value flexibly, e.g., a value can be JSON data, to include mode
detailed data within it.

There is also a KVS system that has the following additional features:

• Secondary Indexes against the structured value, to be used for the data query, and joins

• Dynamic scale-out and scale-in to support workload fluctuations

• Sorting of data records within the server (shard), which accelerates a designated continuous/full scan of data

However, KVS is not good at the following points if compared to RDB.

• Strict (i.e., ACID properties) and/or Strong Consistency is difficult to support - some KVS supports BASE
model only, and other KVS may support strong consistency within a shard but not do cross-shard consistency.

o Note:

 ACID means “atomicity, consistency, isolation, and durability,” a set of properties with which
the RDB should be equipped.

 BASE means “basically available, soft state, and eventual consistency.”

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 20

Strong consistency means some consistency level between ACID and BASE, e.g., providing
ACID for the transactions that occur in a single shard and covers up to N records
simultaneously.

• Complex joins against records stored across multiple shards is slow - this is due to 1) an inefficient secondary
index mechanism, as you can imagine the creation of optimal indexes against the data of which data structure
and statistical distribution are unknown in advance, and 2) overhead around parsing the “Value” field each
time, and extracting data elements within it, etc.

Today’s Implementation Model
A typical implementation model of today’s KVS is shown below.

Figure 3. Today’s Implementation Models of the Key-Value Store

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 21

For complex joins, there are several implementation models in use currently, as described below.

Figure 4. Complex Query Behaviors in the Key-Value Store

An example of data distribution algorithms and their impact on the scale-out/in operations are described below.

Figure 5. Concept of the consistent hash-based data distribution

Gap Analysis
KVS is an excellent technology for processing a large amount of data with outstanding scalability. However, if we look
at the implementation model above, we can notice several challenges.

• To decrease the response time, intelligent clients with the smart driver access a KVS Shard where the data
resides in a pinpoint manner, by knowing data distribution in advance, for example, by obtaining configuration
information from the metadata server to locate the data before accessing it. However, what happens when we
scale out / in the KVS system? There will be a delay in delivering configuration change information to the
client. Thus, a KVS that received a data access request from the client needs to forward it to the shard where
the data resides.

• Too slow, cross-shard joins are problematic when considering use cases like 4D Map. Large data transfers
across shards need to be accelerated and optimized no matter what deployment model is chosen. This
becomes especially important when KVS clusters are built across data centers. Another issue exists around
spatial and temporal data queries. The secondary indexes are well optimized for this type of query. In addition,
spatial-temporal analysis is a cumbersome process compared to scalar value processing or matrix operations,

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 22

so it is necessary to have a suitable mechanism that enables efficient distributed processing on multiple
servers.

• Dynamic scale-out / in operations are problematic because they involve moving data. During scale-out / in
operations, online processing tends to be slow because many computing resources are used for the data
movement process. Some data access requests need to be forwarded to another server, as requested data
may already be moved to that server.

4.3. Graph Store
Existing Technologies Overview
Graph store has existed for decades. In past years, its usage and development have seen significant advancement
since its use for social network analysis and web analysis. This type of database stores a graph that is composed of
nodes related to each by edges. Information related to a node is stored in properties attached to the node. The graph
usually matches with an ontology that defines the schema and meaning of the possible nodes, edges, and properties.

Today’s implementation model
In Graph Store, linkage indexes between nodes are kept inside the node to speed up data exploration. In addition,
various properties are also stored as Key-Value Pairs in nodes and edges, and indexes are added appropriately to
speed up the search. If compared with relational DB, the difference is obvious. The figure below is a simple
representation of the difference in data structure between Relational DB and Graph Store.

Figure 6. High-level Data Structure in the Graph Store

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 23

To manage a large number of data records, i.e., nodes and edges, multiple servers are used, and data is distributed
across them. Data placement is determined by the partition key. For better performance, the partition key is determined
to collocate the most relevant records to the same server as much as possible to minimize cross-server links. If the
data in the graph store needs to be updated frequently, a Graph Store cluster will be built by having two types of servers,
one for data management and the other for data analysis. Such today’s implementation model is described in the
following diagram.

Figure 7. Today’s Implementation Models of the Graph Store

Gap Analysis
Data represented in a graph is well suited to represent the real world. However, Digital Twins such as in the Green
Twin use case explained in section 6.2, are not only data but also analytics. The analytics process identifies current
situations, predicts future situations, and recommends action from the data collected by sensors that describe raw
information. For this purpose, analytics process time-series data. While properties can hold time-series information, a
graph store is not well suited to efficiently handle this kind of information.

The Graph can also model geographic information, and geo-query are executed by applying filtering to the semantic
query. The geo-information is treated the same way as any kind of information. Therefore, a graph store cannot
differentiate it from any other type of filtering and optimize upon it, such as geo-distributed query optimization.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 24

Another challenge is the high dynamicity of the Digital Twins data and the sensor measurements. Sensor data is pushed
continuously. A graph database is not well suited for this high frequency of data updates.

Complementary to the previous issue, analytics attached to Digital Twins needs to be notified of new information
matching the data of interest. A system for semantic subscription to the graph is needed. There are some ways of
implementing it with nowadays graph store, such as issuing a message to a message broker for every node update.
However, this kind of operation needs specific system integration.

Finally, Digital Twins are observed and represented by different domains. Taking the example of the Green Twin, the
digital twin representation of a building is managed by the energy company (thru. smart meters), the local building
owner (thru. installed sensors), and the event company that hosts an event in the building (thru. their monitoring
system.) at the same time. This means that the graph of information is distributed between domains, but the graphs
are not completely disjoint since the same node is available in many storage instances.

4.4. Message Broker
Existing Technologies Overview
As a large amount of data is continuously transmitted from IoT devices, message broker technologies are well used
today. The roles of such message broker technologies are ingesting data with high throughput, protecting the data from
being lost, and smoothly passing it to the application that uses the data. Examples of such message broker technologies
are Kafka and Cloud-based offerings. These technologies are designed to achieve higher-throughput and sequential
data writing and reading while providing a unified interface for ingesting data from various devices. However, their main
design targets are small payload data such as IoT data and notification messages.

Today’s Implementation Model
A typical implementation model of today’s message broker system is shown below.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 25

Figure 8. Today’s Implementation Models of the Message Broker

Gap Analysis
Today’s message broker systems are well designed and can provide high throughput stably. However, there are still
some issues to be solved as described below:

• In the use case of mixture data, large-size data will also be handled at the same throughput and latency as
small data. However, there are few systems in the current Message broker that can efficiently handle data
above a specific size. Most existing systems achieve over 100K message/s/broker when message size is
smaller than 10KiB but only handle messages with a 2MiB payload at 0.1K message/s/broker.

• The time lag between when data is ingested and when data becomes available for consumers, is not small,
e.g., 50 - 100 milliseconds in a Cloud-based typical configuration. This is due to propagating the data so that
it is not lost. Especially in the public cloud, it should be noted that data is propagated to adjacent data centers
(availability zones) as a fault tolerance measure.

• Only sequential reads are supported. It cannot be used for condition-based record extraction.
For 4D maps, or some intelligent applications require condition-based data retrieval because, depending upon
the situation, the records of concern are scattered apart in a data stream. To support such a conditional query,
today’s implementation requires another data management component. The user has to ingest data to the
message broker first, then extract data from there, re-ingest data to another data management, and run the
conditional query. Such a series of data processing seems to be overhead for large data streams since these
don’t create any business value.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 26

• Dynamic scale-out and scale-in are slow. Today’s implementation model requires moving from one broker to
another during scale-out/in operations while inserting and reading data simultaneously. This is a challenging
problem. Ideally, the vast memory space that pipelines the information needs to be built and shared by multiple
brokers to be scaled out / in without moving the data.

• In the use case of IOWN GF, the message broker is accessible by the end-user, which requires the message
broker to many subscribers. For instance, in a Mobility Service use case, millions of cars send and receive
messages throughput message brokers. Today’s implementation model does not focus on such a scene.

• It is impossible to handle cases where many subscribe or unsubscribe events are expected to a specific topic.
For example, in a Mobility Service use case, if there are hundreds of thousands of cars in a particular area,
and many of them go in and out of the area, the topic model of the message broker will be challenging to
handle messages.

4.5. Object Storage
Existing Technologies Overview
Object Storage is a great technology used frequently within the public cloud. This technology will not provide legacy
storage access methods to clients, such as data block-based access as in the local file system and an NFS/CIFS/SMB
type of file-based access as in the file server system*1. Such low-layer data access methods/protocols are hidden in
the Object Storage, and just the REST APIs are provided to access the data. By doing so, Object Storage maximizes
utilization of the storage resources and compute resources for the data access (i.e., servers to host APIs) and offers
the storage service at a very low cost.

*1 By placing the so-called gateway component in front of the Object Storage service, the client can access data stored
in Object Storage through file system protocols. However, only stateless APIs such as REST API is included as native
APIs for object storage.

Today’s Implementation Model
A typical implementation model of today’s Object Storage is shown below.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 27

Figure 9. Today’s Implementation Models of the Object Storage

Gap Analysis
As shown in the above diagram, the object storage system is configured to allow multiple tenants to share the storage
resources and scale significantly in the public cloud. However, as a side effect, it is challenging to guarantee stable
performance. For instance, it is very difficult to guarantee the response time until the system receives the first byte of
requested data and the throughput/bandwidth to continuously extract large amounts of data. As a result, Object Storage
is not used for near-real-time processing today. When used as a data lake infrastructure for big data, it also impacts
price/performance ratios and power consumption. Moving data to a server cluster for analysis takes time, while many
CPU and GPU resources are left unused. In addition, there is a problem that when you put copies of various data into
the cloud object storage to build a Data Lake. In many cases, it will end up becoming an unorganized data repository,
a so-called “Data Swamp.” Furthermore, in some Object Storage systems, consistency is not guaranteed. This means
when the application client overwrote the Object X, another client may retrieve the older version of the Object X. The
delay in data propagation causes this to make multiple copies of object data chunks in the public cloud data center,
which is defaulted by the cloud vendor to prevent data loss.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 28

The new Object Storage implementations should be studied to enable us to manage and utilize larger amounts of data
more efficiently across multiple data centers.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 29

5. IDH Reference Implementation Models
This section will summarize bottleneck points seen in today’s implementation models and then discuss how IOWN
technologies and architectures will eliminate those bottleneck points and how the IDH Reference Implementation
Models that incorporate such technologies will look.

5.1. IDH Generic Architecture and Acceleration Methods
Figures 10 and 11 below respectively show the overall abstracted structures and common internal structures of today’s
IDH service implementation models, which consist of four components and three network segments, as outlined below:

Components

• Client: Request data to an IDH Service

• Frontend Tier: Provides load balancing, query routing, service protocol translation, message aggregation,
caching

• Data Service Tier: Serves/updates data in response to data access requests from its local cache, if available,
or the storage tier it relies on.

• Storage Tier: Stores data.

Networks Segments

• Frontend Connection: connects a Client and a Frontend node.

• Mid Connection: connects a Frontend node tier and a Data Service node.

• Backend Connection: connects a Data Service node and a Storage node.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 30

Figure 10. Overall Structures of Today’s Implementation Models of IDH Services

Figure 11. Common Internal Structure of Today’s Implementation Models of IDH Services

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 31

There will be various bottleneck points of the IDH Services that arise for the future digitization services as described as
gaps in chapter 4, for instance;

• When the client uploads or downloads a large amount of object data, such as a 10 GB log file, from some IDH
service, Client - Frontend Tier or Frontend Tier - Data Service Tier connection becomes a bottleneck

• For complex queries that need to shuffle or join a few PB data across multiple data service servers, inter-Data
Service server connection becomes a bottleneck

• For full scanning type queries that read a few EB data from the storage, Data Service Tier - Storage Tier
connection becomes a bottleneck

To meet future digitization demands, these bottleneck points must be eliminated. The common solutions using IOWN
technologies for this are described below.

5.1.1. Solution to eliminate bottlenecks around Client - Frontend - Data
Service Tier connections

When IDH Services are used, the client has to connect to the data services, often through the Frontend tier, and data
access requests and response data are exchanged. To achieve near-real-time processing, the network latency for
these communications must be shortened, and the bandwidth must be widened, especially when a large amount of
data needs to be transferred repeatedly.

Half of these objectives are achieved with Open APN and IOWN GF DCI architecture. Open APN provides a direct
optical communication path between two endpoints. Thus, the latency is shortened, and the bandwidth is widened.
IOWN GF DCI architecture controls a flexible and dynamic establishment of the high-speed network on top of Open
APN. It governs the inter-node communication within the cluster and the cluster-to-cluster communication through the
DCI Gateway.

The other half is realized by a control plane mechanism embedded in the IOWN Data Hub Technologies. As the data
is distributed across multiple data service nodes, data access requests must be forwarded in consideration of data
location. The IOWN Data Hub Technologies will deliver the latest data placement knowledge to the Clients and/or
Frontend tier. By knowing the data placement, the Client and/or Frontend can become smart* and directly send the
data access requests to the most appropriate Data Service server. This reduces extra data transfer, thus can improve
latency and bandwidth.

* After this, we will call the client that becomes smart a smart client.

5.1.2. Solution to eliminate bottlenecks around inter-Data Service Server
communications

When data processing, such as complex join, simultaneous update of multiple records, etc., is triggered frequently,
large amounts of data are exchanged among Data Service servers. If the network speed is slow, it wastes CPU
resources on Data Service servers. That means, especially when the blocking protocol is used, as is often the case
with today’s implementation models, CPU cycles will be wasted due to I/O wait. The non-blocking protocol could
alleviate this issue, but it depends on a highly reliable network and has a problem of increasing complexity for distributed
state management.

The Open APN helps eliminate bottlenecks in both cases because it provides a high-speed and reliable network. On
top of it, the IOWN GF DCI can establish such a high-performance IDH cluster dynamically combining multiple
resources. In addition, IDH Services will be designed to leverage the power of non-blocking protocols, i.e., RDMA in
DCI, and to process and manage huge amounts of data in near real-time.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 32

5.1.3. Solution to eliminate bottlenecks around Data Service Server -
Storage Tier communications

In IDH Services such as Object Storage and Data Lake, the exchange of data between the storage tier and the data
service tier is extensive. Relying on local storage to solve this problem is not desirable if considering Cloud-Native
principles. That means modern system architectures should be determined to scale compute and storage separately
on demand. In that sense, the storage becomes a type of remote server in the IDH Reference Implementation Models.
In many of today's cloud-based implementation models, the storage is built as such a server. However, these storages
are not very smart. It just responds to the requester with the requested data blocks or objects. In today’s implementation
models, the amount of data transferred at that time can be hundreds of terabytes with one request, and the system will
be unresponsive for a long time. Therefore, today’s IDH services often consume a lot of the network bandwidth for
communications between the Data Service servers and the storage.

The Open APN will solve this problem due to its high-speed network services established between Data Service servers
and storage. In addition, the data transfer between Data Service servers and storage will be accelerated by RDMA in
the IOWN GF DCI. This is because the TCP protocol that responds to Ack each time has a high overhead to transfer
a large amount of data. Using IOWN technologies, such tuning at the protocol level is also thoroughly done. Also, in
IDH services, data preprocessing will be actively offloaded on the storage side using Smart NICs and the like. By
allowing data to be filtered and aggregated on the storage side, data transfer across the network will be reduced by a
factor of 100 or more. With these mechanisms, IDH services will run much faster in the IOWN GF Reference
Implementation Models than in today's Implementation Models.

5.2. IOWN Reference Implementation Model for Each IDH
Service Class

On top of the common solutions using IOWN technologies described in Section 5.1, this section explains additional
things for each IDH service, such as unique requirements and special designs required to fulfill these. And it shows the
IOWN GF Reference Implementation Models that reflect such design ingenuity, too.

5.2.1. Distributed Relational Database (Distributed RDB)
The basic structure of Distributed Relational DB is shown in the following figure, which consists of four layers; smart
client, gateway (optional), DB server, and Storage, each of which is interconnected via a network.

Figure 12. Basic Structure of Distributed Relational DB

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 33

As described in section 5.1, Open APN and IOWN GF DCI will accelerate communications between components that
make up the Distributed Relational Database and data extraction from storage to improve its performance. In addition
to these, some ingenuity will be added to the IDH Distributed Relational DB to accelerate its characteristic functionality,
such as updating large amounts of data while maintaining consistency, high-speed data query from various
perspectives, etc. Below is a list of the components and network connections that make up the IDH Distributed
Relational DB, with explanations of ingenuity implemented, if any.

• Smart Client
As described in section 5.1, the clients will become smart to send the data access requests to the most
appropriate DB server where more request data exists in the cache. Given the IOWN GF use case, we'll find
very low-latency data management requirements, such as digital twin infrastructure representing real-world
situations in virtual space within tens of milliseconds or less. To achieve such low latency data processing,
extra hops that require the software-defined controls in the communication path should be eliminated, which
requires the client to be smart. To assist such a smart client, IDH Distributed Relational DB will deliver the
data placement knowledge to all clients and ensure the information inside the clients is always up to date.
The smart client also measures the latency required to communicate with each DB server to prioritize the
DB servers to connect to when data is replicated to multiple DB servers.

• Gateway
An endpoint capability to securely connect various clients of various tenants to the Distributed RDB on a
shared environment will be embedded in the gateway component if the Distributed RDB is configured multi-
tenant. With this feature, the tenant to which the access request belongs is immediately determined, and
after applying appropriate security checks, connection to the appropriate DB instance on the same physical
server is permitted. In today's cloud, this is implemented as software-defined controls against the tag
attached to each network packet, which is one factor that causes a delay in accessing DB services. As a
result, a typical DB service response time becomes more than a few milliseconds. Using IOWN technology,
this delay will be reduced by leveraging the power of Open APN and IOWN GF DCI.

• DB Server
In the DB server, the DB engine will become more intelligent to optimize the query optimization plan by
considering the data placement, available network bandwidth, and latency for all server combinations in the
cluster. It will optimize the overall data processing plan, such as which DB server to collect data from the
Storages, process data on which server, transfer data processing requests or data when cross-server
processing is required, etc.

• Storage
Since tabular data is stored in the storage, several accelerators suitable to process it will be embedded, for
example, speeding up encryption/decryption, performing column-oriented compression, creating a summary
index for each data block to speed up full-scan queries, etc.

• Smart Client - Gateway - DB Server Connection

• Inter-DB Server Connection
The DB server cluster may be configured to be geo-redundant, as is done for the high-availability
configuration in today’s cloud-based implementation models. Even in such cases, the flexibility implemented
in the IOWN GF DCI Gateway provides a faster network to connect DB servers between different data
centers. This makes it possible to run DB Services that require high reliability faster than ever.

• DB Server - Storage Connection

The following figure shows images of the IDH Distributed Relational DB Reference Implementation Models with such
ingenuity described above.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 34

Figure 13. Reference Implementation Models of IOWN Data Hub Distributed Relational DB

5.2.2. Key-Value Store (KVS)
The basic structure of the Key-Value Store (KVS) is shown in the following diagram, which consists of four layers;
Clients, Routing Frontend (optional), KVS servers, and Storages, each of which is interconnected via a network.

Figure 14. Basic Structure of Key-Value Store

KVS performance is accelerated through mechanisms described in section 5.1 while ensuring scalability of key-based
simple access. On top of that, to support various data query capabilities and to increase flexibility when data distribution
and/or workload distribution changes, additional ingenuity will be implemented. Below is a list of the components and
network connections that make up the IDH KVS and explanations of ingenuity, if any.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 35

• Smart Client
Like the IDH Distributed RDB case, the clients will become smart to send the data access requests to the
most appropriate KVS server where (most of) the request data exists in the cache.

• Frontend

• Key-Value Store (KVS) Server
Using IOWN technology, the KVS server will be decoupled from the storage. This means improvements to
the current situation in which KVS servers rely on the local storage and are coupled with Storages tightly.
With such a configuration, if the distribution of data and workloads were biased, it would have been
necessary to change the number of servers and relocate the data to level out the data and workload.
However, such operations are difficult, even if a good algorithm such as consistent hash is used. Using
IOWN technologies, it is only required to dynamically adjust the data allocation from Storage to KVS servers,
depending on the amount of data and the workloads. The high-speed network using IOWN technology
makes this possible by allowing remote storage to be used as if it were local storage.

• Storage
In IDH KVS, the Storage becomes a storage server that provides block access to data. In such a storage
server, flexible volume management is implemented so that data blocks according to the hash value range
in the consistent hash algorithm can be dynamically assigned to any KVS server. Such an advanced storage
server enables a more flexible, scalable, and high-performance KVS service.

• Smart Client - Frontend Server - KVS Server Connection

• Inter-KVS Server Connection

• KVS Server - Storage Connection

The following figure shows images of the IOWN Data Hub KVS Reference Implementation Model with such ingenuity
described above.

Figure 15. Reference Implementation Models of IOWN Data Hub Key-Value Store

5.2.3. Graph Store
In the architecture defined in IOWN GF, IDH Graph Store will consist of four layers; Clients, Gateway, Graph Store
server, and Storages, each of which are interconnected via an ultra-fast network, too.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 36

To develop an advanced Graph Store, we must consider two types of workloads: i) fast updates of data records,
including connections, and ii) searching linked data and analyzing relationships. The workload type i) can be addressed
in the same way as the Distributed RDB. However, additional considerations are needed for workload type ii). To speed
up the search and analysis of graphs, it is important to introduce massively parallel processing using multiple compute
resources and a mechanism for efficiently processing link information. Below is a list of the components and network
connections that make up the IDH Graph Store, and explanations of new technology advances added, if any.

• Client

• Gateway
In the IDH Graph Store, the Gateway considers the placement of data and the workload status on each
Graph Store server more precisely. This is because the execution time of a graph search and analysis job
can be very long. Therefore, while trying to publish jobs to servers where more data is cached, jobs are
dispatched to the appropriate server set in consideration of expected CPU cycle usage.

• Graph Store server
In a typical today's implementation model, two types of servers, one for data management and the other for
data analytics, are used, and the graph data is replicated between them. In IOWN GF Reference
Implementation Model, these two server roles are combined. This is achieved because various CPUs,
accelerators, etc. can directly read and write the data stored in the server’s memory via RDMA in IOWN GF
DCI. Therefore, unnecessary data replication is abolished, system resources are reduced, and processing
speed is increased. It also speeds up communication between Graph Store servers, which speeds up
queries that search graph data across servers.

• Storage

• Smart Client - Gateway - Graph Store Server Connection

• Inter-Graph Store Server Connection
To speed up graph search and analysis by massively parallel processing with hundreds of system
resources, it is important that those system resources are connected by a low-latency network. The IOWN
GF DCI provides such a high-speed network, and the IDH Graph Store server cluster is configured on top of
it.

• Graph Store Server - Storage Connection
The unique characteristic of graph data is the link information, including hundreds, thousands, or tens of
thousands of linked objects. A special encoding and a special index format will be required to manage such
data effectively and efficiently. The IOWN GF DCI will provide a mechanism to offload such data processing
from the Graph Store server to resources such as Smart NICs in the storage tier will accelerate the overall
data process.

The following figure shows images of the IDH Graph Store Reference Implementation Model with such ingenuity
described above.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 37

Figure 16. Reference Implementation Models of IOWN Data Hub Graph Store

5.2.4. Message Broker
In a message broker system, data of various sizes, types, and formats are ingested from various devices and passed
to the subsequent consumer applications in which data is processed in different ways. To support not only sequential
and delayed queuing, but also real-time event integration and query-based flexible data extraction, the message broker
is comprised of two types of components, “Data Broker” and ”Event Broker”, in the IDH Reference Implementation
Model. “Data Broker” is designed to queue data that is too large for immediate processing in other systems, so that
data can be processed sequentially or in a batch manner. “Event Broker” is designed to pipeline small messages as
well as the metadata of large messages, so that processes at the subsequent applications can be triggered in an event-
driven manner with low latency. It also supports queries to know which data is ingested and kept in the message broker.

Therefore, the IDH Message Broker can be characterized as:

1. The use case of mixture data: It can handle both small size data and extensive size data.

2. High throughput: It achieves high throughput regardless of the size, type, and format of data.

3. Low latency: It notifies data generation to clients asynchronously to avoid the bottleneck of data transmission.

Below is a list of the components and network connections that make up the IDH Message Broker and explanations of
ingenuity implemented.

• Client
The client library to utilize features of IDH Message Broker is installed in the client. The client library provides
Kafka-feel APIs to interact with Data Broker and Event Broker, including:

o Topic management such as Create, Delete, and List topics.

o Partition management such as Create, Delete, and List partitions.

o Publish messages to the Message Broker

o Subscribe the topics/partitions so that message arrival is notified immediately

o Queries message metadata to get an overview of what data is being ingested

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 38

o Retrieve messages sequentially or conditionally from the Message Broker

One of the main distinctions between this reference implementation model and existing products is that the Client
Library automatically divides and transfers messages to Data Broker and Event Broker for the lowest latency and
the highest throughput.

• Frontend
The Frontend is an optional component for high availability and workload distribution. It provides a unified
endpoint for the end-user and transfers messages to one or more brokers by considering message size.
Without having it, the high availability requirement is not well supported as all messages will be sent to the
Data Broker. Since the Event Broker will be populated from the Data Broker, latency is increased.

• Data Broker and High Throughput Storage
Data Broker and high throughput storage are designed to receive and persistent large-scale data streams at
very high throughput. To achieve this, any incoming stream can be treated as a byte stream to achieve the
best performance. If configured, it also ingests the metadata of received data to the Event Broker.

• Event Broker and Real-time Storage
Event Broker and real-time storage are responsible for routing and storing small messages as a single
object at low latency. To minimize the latency, rapid storage such as persistent memory is used to store
data. If configured, it notifies subscribed clients about message arrival in an event-driven manner to enable
real-time processing. It also provides query capability to enable not only sequential reads but also
conditional reads. In existing message brokers, each stream is composed of resources with a fixed
throughput, so one stream often contains multiple sensor data. Since only pull-type sequential reads were
supported, there are issues with real-time delivery and processing efficiency. The Event Broker will eliminate
these issues.

The following figure shows images of the IDH Message Broker Reference Implementation Model with such ingenuity
described above.

Figure 17. Reference Implementation Models of IOWN Data Hub Message Broker

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 39

5.2.5. Object Storage
The basic structure of Object Storage is shown in the following diagram, which consists of four layers; clients, web
frontend servers, data service servers, and storage, each of which is interconnected via a network.

Figure 18. Basic Structure of Object Storage

With the explosion of data volume, Object Storage has become the core of the data lake. Using IOWN technologies,
some ingenuity will be added to improve the performance of Object Storage. Below is a list of the components and
network connections that make up the IDH Object Storage and explanations of ingenuity implemented, if any.

• Client
On the client-side, only Put and Get REST APIs are used to access the data stored in Object Storage in
today’s implementation model. In the model discussed in IOWN GF, these access methods are extended by
the client library. For instance, a client library that can:

o put and get objects through REST APIs, including AWS S3 compatible ones

o accommodate other protocols such as CIFS/SMB,

o efficiently upload and/or download data based on UDP and/or RDMA protocols, as well as multi-part
access controls, on top of Open APN

o designate query conditions to retrieve only the data chunks that the client needs, such as blocks in
the parquet file and/or video segments in the video file, etc.

These new features are made possible by improving the Object Storage implementation model as described in
this section.

• Web Frontend
The roles of Web Frontend are 1) to interact with Clients, including authenticate and authorization,
confirmation of the existence of the requested object, enabling access to the object data for its clients by
providing a set of general APIs compatible with current cloud services and existing on-premise storage
systems, coordinating multipart upload and download, etc., 2) managing metadata of the object and also to
provide internal load balancing controls for performance and availability. In today’s implementation model for
object storage, the ratio of computing resources to storage resources is fixed. Therefore, the Web Frontend
only provides very limited APIs, such as Put and Get. In the model discussed in IOWN GF, the resource
pool can be configured more flexibly and dynamically. Therefore, other types of functionalities can be added
to the Web Frontend, such as the file system protocols to streamline the data access in the object storage
without requiring a gateway server needed in today’s implementation model.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 40

• Aggregation / Dis-aggregation Server
The roles of the Aggregation / Dis-aggregation server are 1) to dis-aggregate the received data into multiple
blocks before storing them when the client uploads an object to the Object Storage, and 2) aggregate the
several blocks that make up the object to pass it to the client when the client downloads an object from the
Object Storage. In today’s implementation model, splitting this data into parts is simply based on data size.
In the model discussed in IOWN GF, splitting into parts will become more intelligent by considering the
content. For instance, the parts for the parquet file will be determined by the parquet’s internal blocks. The
parts for the video file will be determined by the video file’s internal segmentation, such as a chapter or key-
frame-based segmentation. In addition, index information for these chunks of data will be created, such as
minimum-maximum values for each column stored in the parquet block and collection of subtitle texts, start
and end timestamps, etc., for each video segment. By having such a structure and allowing the client to
specify the data retrieval conditions, only the portion of the data that the client needs can be extracted from
the object storage efficiently and at high speed. This resolves inefficiencies we frequently see in object
storage usage today. To retrieve only the small portion within the object, the entire object needs to be
retrieved from the object storage, which is time-consuming and costly for its users.

• Storage Tier
The role of the storage tier is to persist the object chunks created above and internal index information
securely. To guarantee data persistence, data is replicated three times among different servers typically
located some distance apart. IOWN GF DCI technologies for the inter-cluster network will accelerate this
data replication. In addition, to protect the data-at-rest from any unauthorized access, the data will be
encrypted. IOWN GF DCI will offload such tasks from the CPU to the storage, e.g., Smart NIC installed
there, and encrypt the data with a customer-specified encryption key.
In addition, the storage tier may filter portions of the object and transfer only the required elements to the
Data Service server. This behavior occurs when the client designates the content-aware filtering conditions,
and the required compute resource is available at the storage.

• Client - Web Frontend Connection
If a particular client application uploads and/or downloads a large amount of object data to/from the Object
Storage continuously, such a data transfer will be accelerated by the Open APN and the IOWN GF DCI.

• Web Frontend - Aggregation / Dis-aggregation Server - Storage Connection

The following figure shows images of the IDH Object Storage Reference Implementation Model with such ingenuity
described above.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 41

Figure 19. Reference Implementation Models of IOWN Data Hub Object Storage

5.2.6. Converged DB
In today’s typical cloud-based implementation model, each IDH service provides a limited set of capabilities only. For
instance, the Relational DB can manage tabular format data but not other types of data. The message broker can
accept the massive data ingestion and deliver it to the client application in the almost* same order the data is ingested
but does not support conditional read. Therefore, if the DX apparitions that IOWN GF assumes are built on top of such
limited IDH services, many IDH services need to be combined, and massive data must be transferred across many
components.
* If several shards are used to pipeline the same stream, the order will not be guaranteed for inter-shard reads.

The Converged DB is a new concept that eliminates these inefficiencies and streamlines DX application development
by offering multiple capabilities over different types and formats of data from a single box. Some example scenarios
are 1) querying and joining the tabular and the semi-structured data such as parquet and/or JSON file together in one
place, 2) running transaction processing and heavy analytical processing in parallel, and 3) supporting data extraction
through the conditional queries and data analysis with its inherent compute resources while accepting a large amount
of data ingestion.

To build such a Converged DB, more resources need to be dynamically coupled because workloads and data volume
of the Converged DB will fluctuate significantly. On top of it, various software-level ingenuity needs to be implemented
to optimize, such as data placement and the number of copies to be kept in the server cluster, indexing of the content,
and the data organization in both heap area and data persistence layer. The reference implementation model that
reflects those points are described below:

• Smart Client
Like the IDH Distributed RDB case, the clients will become smart to send the data access requests to the
most appropriate Converged DB server where (most of) the request data exists in the cache.

• Gateway
If the Converged DB needs to accommodate millions of clients from various locations, it may be challenging

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 42

to deliver the data placement and data distribution awareness to all of the clients. In this case, the system
will place the gateway server tier that intermediates connection and data access requests from clients to the
Converged DB servers.
The gateway may also include the security endpoint component if Converged DB is configured multi-tenant,
as in the case of Distributed RDB.

• Converged DB
In the Converged DB, the DB Engine will become “smarter” to optimize the query optimization plan by
considering the available resources at each server as well as the network latency and the bandwidth
between servers. It will determine which DB server(s) to preprocess data, whether to transfer queries or data
across servers when inter-server processing is required, where and how to join and combine the data, etc.

• Storage
In the Converged DB storage, a huge amount of data of multiple types is stored together. Various
accelerators will be built in here to speed up data processing in consideration of such a situation. For
instance, i) an accelerate to encrypt and decrypt data with different encryption keys based on data content-
aware policy, ii) an accelerate that encodes and decodes in an optimal way according to the content of the
data, and iii) an accelerate to manage summary index that describes the maximum and minimum values of
each column for each fixed number of records, will be used.

• Smart Client - DB Server Connection

• Inter-DB Server Connection

• DB Server - Storage Connection

The following figure shows images of the IDH Converged DB Reference Implementation Model with such ingenuity
described above.

Figure 20. Reference Implementation Models of IOWN Data Hub Converged DB

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 43

5.2.7. Context Broker
The context broker has a distributed nature since it intermediates the access of context data between the clients and
storage or other context broker instances and context sources. Context data is handled by different domains that
collaborate with each other. However, the context consumer needs to issue a request to only a single context broker
that is responsible for provisioning data from its own managed context and external context sources or domains.

The following diagram shows the Context Broker Reference Implementation Model adopted by IOWN Data Hub, with
the interaction of subcomponents of the context broker divided into the client, frontend, data service, and storage tiers.
The picture below is a meshed configuration; however, there might be a hierarchical configuration or hybrid
configurations.

Figure 21. Reference Implementation Models of IOWN Data Hub Context Broker

In particular, we have the following components:

• Context Producer
A context producer produces context (such as a sensor) and pushes it to the context broker. The storage
managed by the involved context broker stores it.

• Context Consumer
A context consumer requests context either synchronously or asynchronously. Context is requested with a
context scope, such as data related to a thing, related to a type of a thing, related to a geographic scope,
related to a temporal scope, or a combination of them. Synchronous requests follow the query-response
pattern. The context consumer expects a single message response with the requested context. The
requested context might be collected from any contacted domain, an external context source handled by the
contacted domain or an external domain. In the case of asynchronous requests, a continuous context
stream is established towards the context consumer. As soon new matching context is available either within
the contacted domain, an external context source, or an external domain, it is notified to the context
consumer. IOWN GF DCI might optimize the data traffic, especially for asynchronous communication, in
order to avoid bottlenecks and reduce duplication of notifications. The subscription request might specify a
time Interval value to configure a periodic notification of context. This configuration value should be taken
into consideration for message exchange optimization.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 44

• Context Source
Context source is a source of context that exposes an API for context retrieval. This source can provision
static context data, fresh sensor measurements, or the outcome of analytics processes.

• API
API exposes a domain-specific language to access context data synchronously or asynchronously. API also
exposes operations to register new context sources.

• Context Manager
Context manager serves requests from context producers and context consumers. When a context producer
sends a context update, the context manager stores it into the database and matches it against any
established subscription. When a context consumer sends a context retrieval request, the context manager
discovers context availability matching the request from the context registry and local index. The context
might be available from zero to all of the following sources: domain context storage, locally managed context
sources, external domain. In a synchronous request, the context manager gathers context from all the
involved sources and retrieves a single context message. In case of asynchronous requests, the context
manager establishes a subscription channel to any involved sources.

• Context Registry
Context registry manages the list of available context sources and external domains with their respective set
of contexts. The information contained in this component describes the topology of context sources and their
available context. This information might be used for optimized traffic and intelligent context distribution.

• Context Storage and Context Registry Storage
Basic service classes implement these components. A message broker, a graph store, and a distributed
relational database can be used simultaneously for a different part of context data. In particular, the
message broker handles the continuous updates of context from context producers and towards context
consumers. The graph store keeps the semantic representation of the context and the relationships between
pieces of information. The distributed relation database stores fundamental structured data such as spatial
information and temporal information.

5.2.8. Virtual Data Lake (Federated Object Storage)
In the future digital era, more data generated from different locations will be managed in a distributed manner, such as
in the edge clouds. Besides all that, Object Storage remains a core component to store big data as it provides the
cheapest data storage mechanism. Thus, the Object Storage itself needs to become geo-distributed. We call such a
geo-distributed Object Storage a “Virtual Data Lake.”
The following figure shows a new IOWN Data Hub concept on Virtual Data Lake that integrates multiple object storage
locations. Each Object Storage may belong to a different organization, but each must be configured to be trusted and
federated with one another.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 45

Figure 22. Reference Implementation Models of IOWN Data Hub Virtual Data Lake

To realize fast and quality Virtual Data Lake, IOWN Data Hub will add some ingenuity to it and what has been added
to the basic Object Storage. Below is a list of the components and network connections that make up the IDH Virtual
Data Lake and explanations of ingenuity implemented, if any.

• Client
To realize the data transfer between multiple data owners of IDH, those tenants should be able to get data
managed by other tenants through a general API or I/F regardless of location and data storing method.

• Frontend

o Global Name Space and Unique Object ID

By exposing the globally integrated namespace (Unified Namespace), the clients can access files
without being aware of the location and owner of data. (E.g., a client application can get a file as if it
gets the file from a directory of the local storage).

o Federation
Unlike simple Object Storage that collects all data in a single place, collecting only the metadata from
a storage object and keeping the complete master data in the storage Tier makes it possible to
provide centralized virtual management. Using this new approach, a client application can access
the necessary data by referring to the metadata. By doing so, the system avoids creating the
enormous amount of data copies that occur in today’s implementation model, none of which support
a geo-distributed solution. By requesting only the necessary data, the system ensures high-speed
and efficient on-demand data transfers. Cache sharing function and pre-fetch function in accordance
with the access pattern and frequency will be provided.

o Basic authentication and authorization functions are provided to allow data access only for authorized
clients. This model is equipped with an access control function unique to a data distribution platform
that takes into account data provenance and lineage (e.g., X company data + Y company data =>
data processed by A company). Furthermore, as an optimization technique for multi-tenant premises,
it is equipped with data acquisition speedup by sharing cache between tenants, data
acquisition/deployment functions considering the locality of each component, and so on. To realize

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 46

such a function, frequent data transfer is required within the Frontend Tier (between Federation
components), but the effect can be minimized by improving the efficiency of data transfer by DCI.

• Aggregation / Dis-aggregation Server

• Storage Tier

• Client - Web Frontend Connection

• Web Frontend - Aggregation / Dis-aggregation Server - Storage Connection

5.2.9. Virtual Data Lake House
In addition to the Virtual Data Lake concept described above, there will be more advanced requirements to analyze
and utilize more data from various data sources. We call the system to support such requirements the “Virtual Data
Lake House.”

The following figure shows the IOWN Data Hub concept of the Virtual Data Lake House that virtually aggregates and
manages data from various data sources with multiple data owners.

Figure 23. Reference Implementation Models of IOWN Data Hub Virtual Data Lake House

To enable such a Virtual Data Lake House concept, IOWN Data Hub will introduce some ingenuity on top of other IDH
services. Below is a list of the components and network connections that make up the IDH Virtual Data Lake House
and explanations of ingenuity implemented, if any.

• Client

• Virtual Data Lake House Server
This component will provide a single point to access data for its client on top of various IDH Services. That
means, if the Client application publishes SQL query to the Virtual Data Lake House, then the Virtual Data
Lake House disassembles the query by considering other IDH Services to be contacted and forwards these
disassembled queries to them. Then, each IDH Service that has received such a disassembled query will
preprocess data as requested and reply only to the Virtual Data Lake House. Through such a mechanism,
global data access is streamlined.
To provide unified accesses across multiple IDH services, wrapper components that manage their
interaction are added. In addition, inter-server parallel processing is performed on multiple Virtual Data Lake
House servers to combine data from multiple IDH services and obtain the final result.
In addition, it is possible to federate multiple Virtual Data Lake Houses. To realize a better society, it is
necessary to combine and utilize various data from multiple companies safely. Virtual Data Lake House will
be the foundation for such a better future.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 47

• Virtual Data Lake House Server - Other IDH service Connection
To accelerate data access, connections between Virtual Data Lake House and other IDH services will be
accelerated by Open APN and IOWN GF DCI technologies.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 48

6. Example Use Cases
6.1.1. Live 4D Map
To realize the future services described in the IOWN GF use case reports, it is required to manage and analyze various
types of big data, know the real-world situation, record the events of concern, and predict the near future very precisely
in real-time. For instance, the Live 4D Map needs to be created by combining multiple IDH services to build a
safeguarding system. In the Live 4D Map, as in the following diagram, various types of data need to be managed,
linked, and used together.

Figure 24. Live 4D Map Concept

Depending upon the use case scenario, the throughput and response time requirements vary. However, it would be
reasonable to assume the following requirement numbers and IDH services to be applied to satisfy those numbers.

• For the Latest Status Management Tier:

o Requirements

 Manage more than millions of data records, each of which has several KB or more

 Accept more than millions of updates per second at a latency of milliseconds or less to
update the statuses of moving objects to be monitored, e.g., positions, actions, relationship
with other objects, etc.

 Respond very quickly to the query that retrieves historical records for specified objects at a
latency of 10 milliseconds or less to support analysis of historical movements/behaviors of
the objects.

o Solution

 Distributed RDB, which handles only fixed columns in tabular format, is the best way to get
a high-speed overview of the situation. It is also good at extracting data at high speed based
on attributes such as object type and coordinates.

• For the Time-Series / Historical Records Tier:

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 49

o Requirements

 Manage more than billions or trillions of data records, each of which has several KB or more

 Accept more than millions of inserts per second to record real-world events, object
movement, actions, etc.

 Respond to the query that retrieves historical records for specified objects very quickly, such
as at a latency of 10 milliseconds or less, to support analysis of historical
movements/behaviors of the objects.

o Solution

 A converged DB will be the most appropriate solution because a huge amount of data with
various formats needs to be managed and analyzed together. For instance, object
recognition results may be represented as JSON, as it includes various attributes, and
object movement trajectories may be managed as a collection of timestamps and coordinate
key-value pairs. These data are managed together and associated as needed as in the
Graph Store to understand the situation. Such workloads are handled well in the Converged
DB.

• For the Behavior Pattern / Knowledge Tier

o Requirements

 Manage as many patterns as needed

 Manage interactions and relationships between two or many objects

 Compare each monitored object behavior with registered patterns, at a latency of 10
milliseconds or less

o Solution

 Graph store is best suited, as knowledge about behavior patterns is expressed not only by
the target object but also by its relative relationship with surrounding static structures and
other objects. Graph store can manage such a relationship between arbitrary objects well.

• For the Static and Semi-static structure Tier

o Requirements

 Manage geometry objects precisely, e.g., with cm-level accuracy

 Support both the geospatial query and the update transactions quickly, at 10 milliseconds
or less latency.
Note: The semi-static structure includes desks, chairs, etc., which could be moved
occasionally

o Solution

 A key-value store with geometry information and spatial indexes is a good choice because
the static structures to be represented are very diverse, have various shapes and positions,
and the number of records is huge, but the update frequency is not very high. In such cases,
a KVS type Data Hub service is the best choice.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 50

As highlighted in the above requirements, to realize IOWN GF use cases, the various types of Big Data need to be
jointly managed and analyzed with very low latency and in a very scalable manner. As these requirements are
impossible to achieve with today’s solutions, IDH services built on the Open APN and the IOWN GF DCI will be required.
The following figure shows such a possible high-level design of the Live 4D Map built on top of multiple IDH Services.

Figure 25. IDH Service Mapping to build Live 4D Map

6.1.2. Green Twin
Another example is the so-called Green Twin that monitors and coordinates people’s activities to save energy while
increasing their living value. For example, in urban areas, many cars drive the same place many times to find a parking
spot. This wastes energy, emits CO2, and reduces the value of people's lives. What would happen if we could monitor
the population’s living spaces, manage the efficiency of their energy use in digital space, and deliver appropriate
recommendations to individuals to help them save resources? Obviously, the energy consumption in the real world
would be reduced, and people’s quality of life would be enhanced. In addition, the Digital Twin of a neighborhood
environment, such as a parking spot, is related to other environments such as building management and public
transportation. For example, parking status can be used to assess building activity patterns while still accommodating
scheduled events to predict parking availability in the future. We can see that analytics services applied in the digital
world are meant for understanding current situations, predicting future situations, and recommending actions. Digital
Twin data is shared among twins, and analytics services might relate to multiple Digital Twins. The granularity of the
Digital Twins is not fixed; it can be infinitely coarse or fine-grained. Digital Twins interact with each other in the sense
of Digital Twin relationship a different granularity, Digital Twin analytics services related to multiple twins, and shared
data among Digital Twins. In addition, Digital Twin represents physical twins in the real world. Therefore, the digital twin
analytics process needs to have a spatio-temporal understanding of the real-world dimensions.

The figure below shows such a possible Green Twin use case.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 51

Figure 26. Green Twin Use Case

To realize such a Green Twin platform, it is required to curate, analyze and utilize a large amount of various data at
any time. Such functional requirements are summarized below:

• Digital Twin represents the real world; thus, spatio-temporal characteristics should be considered as native
information.

o Geographic discovery of Digital Twin

o Type-based discovery of Digital Twin (e.g., request for all parking slots)

o Historical records of Digital Twin

• Digital Twins are related to other Digital Twins without fixed boundaries of granularity:

o sensors to objects: e.g., device1 and device2 sense in room1

o objects to events: e.g., meeting1 happens in room1, person1 and person2 are involved in meeting1

o objects to objects: e.g., room1 is in building1, parkingSlot1 is in front of building1, car1 is parked in
parkingSlot1

• Heterogeneous data sources:

o Camera stream linked to a Digital Twin

o Sensor stream linked to a Digital Twin

• Digital Twin framework comprises both data and analytics services. Analytics service might request data
synchronously (query-response) and asynchronously (subscription-notification).

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 52

IOWN Data Hub services make it easy to build such a foundation at low cost. More specifically, it may be possible to
efficiently collect a large amount of data from various devices through a message broker, associate data rapidly with a
context broker, perform high-speed analysis on top of the context broker, and store the results to a KVS to deliver the
recommendation to people or automatic systems. The figure below shows an image of Green Twin based on IOWN
Data Hub services.

Figure 27. IDH Service Mapping to build Green Twin

If we built it on today’s cloud environment, it would be an expensive system because we have to combine many Data
Hub services, and there are various bottlenecks inside, as we have discussed in this paper. Using IOWN technologies,
these issues can be solved because it improves the performance of the Data Hub services and makes them multi-
functional. Thus, the number of Data Hub services is reduced, the system is simplified, and the system cost is saved.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 53

7. Next Steps
This document summarizes the technical position of IDH in IOWN GF DCI and presents minimum viable versions that
solve the bottleneck of existing cloud-based data processing. On the other hand, the analysis presented here is
conducted based on some limited scenarios. It is likely that more advanced features will be required for the more
advanced data processing flows that future applications using IOWN technologies will face. This section will briefly
introduce the IDH features that may be needed for the next step.

Integrated authentication and authorization
IDH needs to handle data from multiple organizations. While this document only describes simple requirements, more
advanced functionality will likely be required when considering scenarios where various organizations use data. To
utilize data from multiple data owners in a unified manner, the IOWN Data Hub needs a standardized API to support
authentication/authorization and data management functions. This document version does not provide sufficient
analysis of this functional requirement, but the next step should be to define the common functionality that IDH should
support. This would include user/entity identification, authentication at an appropriate level of reliability, and flexible
authorization of how the data is used.

Policy control, enforcement, and auditing
Access to and usage of the data should be controlled based on the policies of the data owner, and the data owner or
authorized entity should be able to review the history of data usage. There needs to be a mechanism for data owners
and data users to agree on and approve the content of data use (e.g., data quality and data processing methods, etc.),
which will also help protect privacy and ensure data authenticity. It is also necessary to guarantee the CIA
(Confidentiality, Integrity, Availability) of the data stored and in transit and to be able to detect and respond to threats
that compromise them at an early stage.

Secure/Confidential computing
In a more advanced example, some of the IOWN GF use cases are scenarios where AI is required to process data
from multiple organizations across a wide range of societies and cities to predict social trends. In such scenarios, the
challenge is to simultaneously meet the sometimes-conflicting demands of the stakeholders involved, e.g., sharing the
results of integrated processing of competitors’ data without disclosing the data to each other, obtaining the results of
analysis of one’s valuable data by another company’s secret analysis program without revealing the data and analysis
program to each other, and obtaining only the results to solve business and social problems. For this purpose, we
should consider using secure computing and confidential computing technologies, which have been the subject of much
research and development in recent years, and execute them at high speed using DCI.

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 54

References
[IOWN GF AIC UC] IOWN Global Forum, “AI-Integrated Communications Use Case Interim Report,” 2021.

https://iowngf.org/use-cases/

[IOWN GF CPS UC] IOWN Global Forum, “Cyber-Physical System Use Case Interim Report, Version 2.0,”
2021 https://iowngf.org/use-cases/

[IOWN GF DCI] IOWN Global Forum, “Data-Centric Infrastructure Functional Architecture,” 2022.

[IOWN GF Open APN] IOWN Global Forum, “Open All Photonic Network Functional Architecture,” 2022.

[IOWN GF RIM] IOWN Global Forum, “Cyber-Physical System, Reference Implementation Model,” 2022

https://iowngf.org/use-cases/
https://iowngf.org/use-cases/

Data Hub Functional Architecture

© 2022 Innovative Optical Wireless Network Global Forum, Inc. All rights reserved. • www.iowngf.org 55

History

Revision Release Date Summary of Changes

1.0 January 27, 2022 Initial Release

	1. Introduction
	2. Required Service Types
	3. IDH Service types and classes
	3.1. Service types
	3.1.1. Distributed Relational Database
	Supposed data flows
	Functional requirements
	Performance and other non-functional requirements

	3.1.2. Key-Value Store (KVS)
	Supposed data flows
	Functional requirements:
	Performance and other non-functional requirements

	3.1.3. Graph Store
	Supposed data flow

	3.1.4. Message Broker
	Supposed data flows
	Functional requirements:
	Performance and other non-functional requirements

	3.1.5. Object Storage
	Supposed data flows
	Functional requirements:
	Performance and other non-functional requirements

	3.2. Service Classes
	3.2.1. Basic Service Classes
	3.2.2. Applied Service Classes
	Converged DB
	Context Broker
	Virtual Data Lake (Federated Object Storage)
	Virtual Data Lake House

	4. Today’s Implementation Models and Gap Analysis
	4.1. Distributed Relational Database (Distributed RDB)
	Existing Technologies Overview
	Today’s Implementation Models
	Gap Analysis for the DB Server Tier
	Gap Analysis for the Storage Tier

	4.2. Key-Value Store (KVS)
	Existing Technologies Overview
	Today’s Implementation Model
	Gap Analysis

	4.3. Graph Store
	Existing Technologies Overview
	Today’s implementation model
	Gap Analysis

	4.4. Message Broker
	Existing Technologies Overview
	Today’s Implementation Model
	Gap Analysis

	4.5. Object Storage
	Existing Technologies Overview
	Today’s Implementation Model
	Gap Analysis

	5. IDH Reference Implementation Models
	5.1. IDH Generic Architecture and Acceleration Methods
	5.1.1. Solution to eliminate bottlenecks around Client - Frontend - Data Service Tier connections
	5.1.2. Solution to eliminate bottlenecks around inter-Data Service Server communications
	5.1.3. Solution to eliminate bottlenecks around Data Service Server - Storage Tier communications

	5.2. IOWN Reference Implementation Model for Each IDH Service Class
	5.2.1. Distributed Relational Database (Distributed RDB)
	5.2.2. Key-Value Store (KVS)
	5.2.3. Graph Store
	5.2.4. Message Broker
	5.2.5. Object Storage
	5.2.6. Converged DB
	5.2.7. Context Broker
	5.2.8. Virtual Data Lake (Federated Object Storage)
	5.2.9. Virtual Data Lake House

	6. Example Use Cases
	6.1.1. Live 4D Map
	6.1.2. Green Twin

	7. Next Steps
	Integrated authentication and authorization
	Policy control, enforcement, and auditing
	Secure/Confidential computing

	References
	History

